منابع مشابه
Continuity of super- and sub-additive transformations of continuous functions
We prove a continuity inheritance property for super- and sub-additive transformations of non-negative continuous multivariate functions defined on the domain of all non-negative points and vanishing at the origin. As a corollary of this result we obtain that super- and sub-additive transformations of continuous aggregation functions are again continuous aggregation functions.
متن کاملOn Continuity and Monotonicity of Darboux Transformations
In this paper we consider the problems connected with the continuity of Darboux transformations and the monotonicity of the restrictions of these transformations. We show that it becomes possible to give answers to many questions concerning these problems if our considerations are confined to the family of c-functions which is defined in the paper. In paper [DG] (1875), the first example of a d...
متن کاملAbsolute Continuity of Brownian Bridges Under Certain Gauge Transformations
We prove absolute continuity of Gaussian measures associated to complex Brownian bridges under certain gauge transformations. As an application we prove that the invariant measure for the periodic derivative nonlinear Schrödinger equation obtained by Nahmod, Oh, Rey-Bellet and Staffilani in [20], and with respect to which they proved almost surely global well-posedness, coincides with the weigh...
متن کاملSOME RESULTS OF CONTINUITY ?f
The dynamical behavior of a map on the unit interval has been the subject of much contemporary research. In this paper, we will consider the relation between the continuity of the map cof and cof for some positive integer k, where f is a continuous map from the unit interval to itself, and ?f is a function which takes any element of the unit interval to the set of all subsequential limits o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1991
ISSN: 0022-247X
DOI: 10.1016/0022-247x(91)90174-x